Твердость алмаза и его применение

Алмаз

АЛМАЗ (тюрк. алмас, от греч. adamas — несокрушимый, непобедимый * а. diamond; н. Diamant; ф. diamant; и. diamante) — минерал, кристаллическая кубическая модификация самородного углерода.

Структура алмаза.

Элементарная ячейка пространственной кристаллической решётки алмаза представляет собой гранецентрированный куб с 4 дополнительными атомами, расположенными внутри куба (рис.).

Размер ребра элементарной ячейки а0 = 0,357 нм (при t = 25°С и Р = 1 атм). Кратчайшее расстояние между двумя соседними атомами С = 0,154 нм.

Обратите внимание

Атомы углерода в структуре алмаза образуют прочные ковалентные связи, направленные под углом 109°28' относительно друг друга, благодаря чему алмаз — самое твёрдое из известных в природе веществ. В зонной структуре алмаза ширина запрещённой зоны для невертикальных переходов равна 5,5 эВ, для вертикальных — 7,3 эВ, ширина валентной зоны 20 эВ.

Подвижность электронов mn = 0,18 м 2/В•с, дырок mr = 0,15 м2/В•с.

Морфология алмаза. Кристаллы алмаза имеют форму октаэдра, ромбододекаэдра, куба и тетраэдра с гладкими и пластинчато-ступенчатыми гранями или округлыми поверхностями, на которых развиты разнообразные акцессории.

Характерны уплощённые, удлинённые и сложноискажённые кристаллы простой и комбинированной форм, двойники срастания и прорастания по шпинелевому закону, параллельные и произвольно ориентированные сростки.

Разновидности алмаза представляют собой поликристаллические образования: борт — сростки многочисленных мелких огранённых кристаллов и зёрен неправильной формы, серого и чёрного цвета; баллас — сферолиты радиально-лучистого строения; карбонадо — скрытокристаллические, плотные, с эмалевидное поверхностью или шлакоподобные пористые образования, состоящие преимущественно из субмикроскопических (около 20 мкм) зёрен алмаза, тесно сросшихся друг с другом. Размер природных алмазов колеблется от микроскопических зёрен до весьма крупных кристаллов массой в сотни и тысячи карат (1 карат = 0,2 г). Масса добываемых алмазов обычно 0,1-1,0 карат; крупные кристаллы (свыше 100 карат) встречаются редко. В таблице приведены крупнейшие в мире алмазы, извлечённые из недр.

Химический состав. В алмазе присутствуют примеси Si, Al, Mg, Ca, Na, Ba, Mn, Fe, Cr, Ti, В номером. С помощью а-частиц радиоизотопных  Н, N, О, Ar и других элементов. Азот является главной примесью, оказывающей большое влияние на физические свойства алмаза. Кристаллы алмаза, непрозрачные к ультрафиолетовому излучению, называются алмазом I типа; все остальные относятся к типу II. Содержание азота в подавляющем большинстве кристаллов алмаза, относящихся к типу I, составляет около 0,25%. Реже встречаются безазотные алмазы, относящиеся к типу II, в которых примесь азота не превышает 0,001%. Азот изоморфно входит в структуру алмаза и образует самостоятельно или в совокупности со структурными дефектами (вакансиями, дислокациями) центры, ответственные за окраску, люминесценцию, поглощение в ультрафиолетовой, оптической, инфракрасной и микроволновой областях, характер рассеивания рентгеновских лучей и др.

Физические свойства. Алмазы могут быть бесцветными или с едва заметным цветовым оттенком, а также в различной степени ясно окрашенными в жёлтый, коричневый, розовато-лиловый, зелёный, голубой, синий, молочно-белый и серый (до чёрного) цвета. При облучении заряжёнными частицами алмаз приобретает зелёный или голубой цвет. Обратный процесс — превращение окрашенного алмаза в бесцветный — до сих пор не удалось провести. Для алмаза характерны сильный блеск, высокий показатель преломления (n = 2,417) и сильно выраженный эффект дисперсии (0,063), что обуславливает разноцветную игру света в бриллиантах. Как правило, в кристаллах алмаза проявляется аномальное двулучепреломление из-за напряжений, возникающих в связи со структурными дефектами и включениями. Кристаллы алмаза прозрачны, полупрозрачны или непрозрачны в зависимости от насыщенности микроскопическими включениями графита, других минералов и газово-жидких вакуолей. При освещении ультрафиолетовыми лучами значительная часть прозрачных и полупрозрачных кристаллов алмаза люминесцирует синим, голубым и реже жёлтым, жёлто-зелёным, оранжевым, розовым и красным цветами. Кристаллы алмаза (за редким исключением) люминесцируют под действием рентгеновских лучей. Свечение алмаза возбуждается катодными лучами и при бомбардировке быстрыми частицами. После снятия возбуждения часто наблюдается послесвечение различной длительности (фосфоресценция). В алмазе проявляется также электро-, трибе- и термолюминесценция.

Алмаз как самое твёрдое вещество в природе используется в разнообразных инструментах для распиловки, сверления и обработки всех других материалов. Относительная твёрдость по шкале Mоcca 10, максимальная абсолютная микротвёрдость, измеренная индентором на грани (111), 0,1 ТПа. Твёрдость алмаза на различных кристаллографических гранях не одинакова; наиболее твёрдой является октаэдрическая грань (111). Алмаз очень хрупок, обладает весьма совершенной спайностью по грани (111). Модуль Юнга 0,9 ТПа. Плотность прозрачных кристаллов алмаза 3515 кг/м3, полупрозрачных и непрозрачных — 3500 кг/м3, у некоторых австралийских алмазов — 3560 кг/м3; у борта и карбонадо из-за их пористости может снижаться до 3000 кг/м3. Чистая поверхность кристаллов алмаза обладает высокой гидрофобностью (краевой угол 104-105°). В природных алмазах, особенно в алмазах из россыпных месторождений, на поверхности образуются тончайшие плёнки, которые повышают её смачиваемость.

Алмаз — диэлектрик. Удельное сопротивление r у всех азотных кристаллов алмаза типа I равно 1012-1014 Ом•м. Среди безазотных алмазов типа II иногда встречаются кристаллы, у которых r ниже 106 Ом•м, иногда до 10-10-2. Такие алмазы обладают проводимостью r-типа и фотопроводимостью, причём при одинаковых условиях фототок в алмазе типа II на порядок больше фототока, возбуждаемого в алмазе типа I. Алмаз диамагнитен: магнитная восприимчивость, отнесённая к единице массы, составляет 1,57•10-6 единиц СИ при 18°С. Алмаз стоек по отношению ко всем кислотам даже при высокой температуре. В расплавах щелочей KOH, NaOH и других веществ в присутствии О, OH, CO, CO2, Н2О происходит окислительное растворение алмаза. Ионы некоторых элементов (Ni, Co, Cr, Mg, Ca и др.) обладают каталитической активностью и ускоряют этот процесс. Алмаз обладает высокой теплопроводностью (особенно безазотные алмазы типа II). При комнатной температуре теплопроводность их в 5 раз выше Си, причём коэффициент теплопроводности уменьшается с увеличением температуры в интервале 100-400 К от 6 до 0,8 кДж/м•К. Полиморфный переход алмаза в графит при атмосферном давлении происходит при температуре 1885±5°С по всему объёму кристалла. Образование плёнок графита на поверхности граней (III) кристаллов алмаза под влиянием кислорода может происходить начиная с 650°С. На воздухе алмаз сгорает при температуре 850°С.

Распространённость и происхождение. Алмазы обнаружены в метеоритах, импактных породах, связанных с метеоритными кратерами (астроблемами), в Кимберлитах и находящихся в них небольшого размера ксенолитах глубинных мантийных пород передо-гитового и эклогитового составов, а также во вторичных источниках — различных по возрасту и генезису россыпях (аллювиальных, делювиальных, элювиальных, прибрежно-морских, пролювиальных и др.). По вопросам происхождения алмазов нет единого мнения. Некоторые учёные полагают, что алмазы кристаллизуются в самих кимберлитовых трубках при их становлении или в промежуточных очагах, возникающих на небольших (3-4 км) глубинах (субвулканические очаги). Другие считают, что алмазы образуются на большой глубине в родоначальном кимберлитовом расплаве и продолжают кристаллизоваться при подъёме его в верхнюю часть земной коры. Наиболее обоснованно развиваются представления о том, что алмазы генетически связаны с разнообразными перидотитовыми и эклогитовыми породами верхней мантии и выносятся из них вместе с другим ксеногенным материалом, находящимся в кимберлитах. Существуют и другие представления о генезисе алмаза (например, кристаллизация при низких давлениях с использованием углерода из метана глубинного происхождения и карбонатов вмещающих пород).

Читайте также:  Арифмометр однера: история и характеристики

Месторождения алмазов. Промышленное значение имеют алмазоносные кимберлитовые породы и формирующиеся за счёт их размыва россыпные месторождения. Кимберлиты встречаются преимущественно на древних щитах и платформах; для них характерны главным образом тела трубчатой формы, а также жилы, лайки и сиплы. Размеры кимберлитовых трубок от одного до нескольких тысяч метров в поперечном сечении (например, трубка Мвадуи в Танзании с параметрами 1525х1068 м). На всех платформах известно свыше 1500 кимберлитовых тел, но промышленное содержание алмазы имеют лишь единичные. Алмазы распределены в кимберлитах крайне неравномерно. Промышленными считаются трубки с содержанием алмазов от 0,4 карат/ м3 и выше. В исключительных случаях, когда трубки содержат повышенный процент высококачественных алмазов, рентабельной может быть эксплуатация и с более низким содержанием, например 0,08-0,10 карат/м3 (Ягерсфонтейн в ЮАР). В кимберлитах преобладают кристаллы размером 0,5-4,0 мм (0,0025-1,0 карат). Весовая доля их обычно составляет 60-80% от всей массы извлекаемых алмазов. Запасы на отдельных месторождениях исчисляются десятками млн. карат. Наиболее крупные коренные месторождения алмазов разведаны в Заире, ЮАР, Ботсване, Танзании, Лесото, Анголе, Сьерра-Леоне и др.

Основная добыча алмазов ведётся из россыпей (80-85%) различных генетических типов, которые эксплуатируются при содержании 0,25-0,50 карат/м3. Среди россыпей выделяют элювиально-делювиальные (Заир, ЮАР, Гана, Берег Слоновой Кости), аллювиальные (Заир, Ангола, ЦАР, Сьерра-Леоне, Венесуэла и др.), прибрежно-морские и морские (Намакваленд в ЮАР, Намибия и Ангола). Прибрежно-морские и морские россыпи отличаются хорошей сортностью, относительно равномерным содержанием и высоким качеством алмазов. Запасы в крупных протяжённых россыпях исчисляются десятками млн. карат (например, в бассейне р. Бушимае, Заир, первоначальные запасы оцениваются в 109 карат). Главные месторождения алмазов находятся в Африке; кроме того, промышленные месторождения известны и разрабатываются в Южной Америке, Азии (Индия и Индонезия). Приблизительная оценка запасов алмазов в промышленно развитых капиталистических и развивающихся странах 1,2 млрд. карат, из которых на технические алмазы приходится около 75%. Основные запасы технических алмазов сосредоточены в Заире (около 1/2 всех зарубежных запасов алмазов), Ботсване, ЮАР, Гане. Основные ресурсы ювелирного сырья сосредоточены в ЮАР, Намибии, Анголе, Заире и Сьерра-Леоне (см. также Алмазная промышленность).

В CCCP известны как коренные, так и россыпные месторождения алмазов (например, в Западной Якутии, на Урале).

Добыча алмазов. Верхние горизонты кимберлитовых трубок разрабатываются открытым способом, нижние — подземным (вскрытие вертикальным стволом и квершлагами); разработка — с магазинированием кимберлитовой породы и выдачей её через рудоспуски на транспортные горизонты. Россыпные месторождения разрабатываются открытым способом с применением экскаваторов, скреперов или драг.

Обогащение. На россыпных месторождениях порода сначала промывается в гидровашгердах для удаления связующей глинистой массы и отделения крупного обломочного материала; выделенный, рыхлый материал разделяется на четыре класса: -16+8, -8+4, -4+2, -2+0,5 мм. Обогащение производится гравитационными методами (мокрая и воздушная отсадка, обогащение в тяжёлых суспензиях, в концентрационных чашах). Для извлечения мелких алмазов и алмазной крошки применяются плёночная и пенная флотация с предварительной очисткой поверхности. Реагенты: амины, аэрофлоты, жирные кислоты, керосин, крезиловая кислота. Для извлечения алмазов наибольшее распространение получил жировой процесс (для зёрен с крупностью 2-0,2 мм), основанный на избирательной способности алмазов прилипать к жировым поверхностям. В качестве жирового покрытия используют вазелин, нефть, автол и его смесь с парафином, олеиновую кислоту, нигрол и др. Наряду с жировым процессом применяют (для зёрен крупностью 3-0,1 мм) электростатическую сепарацию, основанную на различной проводимости минералов (алмаз — плохой проводник электричества). Используется рентгенолюминесцентный метод извлечения относительно крупных алмазов, основанный на способности кристаллов алмаза люминесцировать (рентгенолюминесцентные автоматы).

Применение. Алмазы разделяются на ювелирные и технические. Первые обладают высокой прозрачностью. Наиболее ценными являются алмазы бесцветные (“чистой воды”) или с хорошей окраской. К техническим относятся все прочие добываемые алмазы вне зависимости от их качества и размеров. В CCCP сортировка алмазов производится по техническим условиям, которые дополняются по мере расширения областей применения алмазов. В зависимости от видов и назначения алмазное сырьё по качеству классифицируется на категории; в каждой категории выделяются группы и подгруппы, которые определяют размер, форму, конкретные условия назначения кристаллов алмазов. Около 25% добываемых в мире алмазов используется в ювелирной промышленности для изготовления бриллиантов.

Важно

Обладая исключительно высокой твёрдостью, алмазы незаменимы для изготовления различных инструментов и приборов (буровые коронки и долота, инденторы для измерения твёрдости материалов, волоки, иглы к профилометрам, профилографам, пантографам, свёрла, резцы, накладные камни к морским хронометрам, стеклорезы и т.д.). Алмазы широко используются для изготовления абразивных порошков и паст, для заправки алмазных пил. Алмазным инструментом обрабатываются некоторые металлы, полупроводниковые материалы, керамика, строительные железобетонные материалы, хрусталь и др. По совокупности ряда уникальных свойств алмазы могут быть использованы для создания электронных приборов, предназначенных для работы в сильных электрических полях, при высоких температурах, в условиях повышенного уровня радиации, в агрессивных химических средах. На основе алмазов созданы детекторы ядерных излучений, теплоотводы в электронных приборах, термисторы и транзисторы. Прозрачность алмазов для инфракрасного излучения и слабое поглощение рентгеновских лучей позволяют применять их в инфракрасных приёмниках, в камерах для исследования фазовых переходов при высоких температурах и давлениях.

Синтетические алмазы. В середине 50-х гг. началось освоение промышленного синтеза технических алмазов. Синтезируются в основном мелкие монокристаллы и более крупные поликристаллические образования типа балласа и карбонадо. Основные способы синтеза: статический — в системе металл — графит при высоких давлениях и температурах; динамический — полиморфный переход графита в алмазах при воздействии ударной волны; эпитаксиальный — наращивание алмазных плёнок на алмазные затравки из газообразных углеводородов при низких давлениях и температуре около 1000°С. Синтетические алмазы используются также, как природные технические. Общий объём производства синтетических алмазов значительно превышает объём добычи природных.

Источник: http://www.mining-enc.ru/a/almaz

Алмаз: самый твердый и крепкий минерал в мире. Твердость алмаз

ГлавнаяРазноеТвердость алмаз

15 мая 2015

Просмотров: 2890

Твердость алмаза можно определить с помощью нескольких известных ранее шкал. Твердость минералов — такой показатель, измерения которого лучше избегать, если такая возможность существует.

Чтобы проверить твердость, нужно царапать минерал различными материалами. Фридрих Моос — известный ученый-минералог — в 1811 году предложил использовать для определения твердости камней специальную шкалу, придуманную им.

Впоследствии ее назвали шкалой Мооса.

Что же такое твердость? Простыми словами, это сопротивление, которое оказывает минерал, когда его пытаются поцарапать другим минералом или материалом.

Читайте также:  Лунный камень: как выбрать, свойства, поверья

Фридрих Моос разработал шкалу с коэффициентом твердости от 1 до 10, где 1 — это тальк, а 10 — алмаз. Ученый взял в свою эталонную шкалу легкодоступные минералы и построил их в линейку по возрастанию сопротивления другим минералам.

Числа твердости, указанные Моосом, не определяют истинную твердость минерала.

Алмаз — самый твердый в мире минерал естественного происхождения, по шкале Мооса его показатель равняется 10. Корунд имеет показатель, равный 9. Ученый удалось синтезировать карборунд, который превосходит по твердости корунд, но алмаз он все равно не царапает.

Сталь по твердости намного уступает алмазу, ее твердость находится в диапазоне от 5,5 до 7,5 в зависимости от сплава. Тверже алмаза сплав стали сделать не удалось. Но твердость стали определяется с помощью алмазных пластин: насколько пластинка или пирамидка вдавится в образец стали, такая и будет твердость.

Сейчас все чаще на производстве алмазы заменяются стальными шариками специальных сплавов.

Прочность алмаза, или почему алмаз такой твердый

Очень давно, когда на Земле еще не было жизни, а сама планета была молодой, на поверхности происходили природные процессы. Тектоническая порода находилась в расплавленном состоянии, она перемешивалась под действием высоких температур и паров различных испарений, а потом медленно остывала. Все эти процессы привели к формированию самого твердого камня, который сейчас называется алмазом.

Происхождение названия данного камня уходит своими корнями в глубокую древность, почему его стали называть именно алмазом, до конца остается неизвестным, но существует ряд предположений:

  1. Слово алмаз пришло из Греции. «Адамас» — «твердый», «несокрушимый».
  2. «Ал-ма» от персидского «твердый».
  3. Название камня происходит от женского имени Элиза или Элайза. Полная форма этого имени Елизавета, означает «Божья милость». По легенде была девушка, которая обладала даром исцеления людей. Имя ее было Элиза. Она была крепка душой и телом, могла своим умением поднять на ноги даже самого тяжелобольного человека. Однажды Элиза влюбилась в прекрасного юношу, он ответил на ее чувства, их любовь была прекрасна, но длилась недолго. Элиза отправилась в дальний путь, чтобы пополнить запасы целебных трав. В это время ее возлюбленный тяжело заболел. Когда Элиза вернулась, он был уже мертв. Девушка жила в горах, она зашла в одну из пещер горной местности и горько заплакала. Это были самые первые ее слезы, они обратились в камни, которые потом стали называть алмазами.

Твердость алмаза и графита

Интересным фактом является то, что алмаз — самый крепкий минерал, а графиту по шкале Мооса соответствует число 1, что означает, что он самый мягкий.

Алмаз и графит состоят из одинаковых атомов одного и того же химического элемента — углерода. Тогда почему одно вещество самое мягкое, а другое — самое твердое? Ответ очень прост. Все дело в химических связях или кристаллических решетках этих минералов.

Совет

Атомы углерода по-разному связаны между собой, поэтому они проявляют разные химические и физические свойства: имеют различный внешний вид, твердость, пластичность, блеск и другие параметры. Графит имеет слоистую структуру.

Атомы углерода между собой связаны слабо, это и объясняет то, что графит очень мягкий.

Лонсдейлит — синтетический алмаз

В природе нет материала тверже алмаза, но наука не стоит на месте. Ученым удалось синтезировать вещество, которое является на 58% прочнее алмаза. Название этого материала — лонсдейлит.

Он может выдержать давление на 55 ГПа больше, чем самый твердый природный минерал. Но его использование почти невозможно, потому что его очень трудно получать. Стоимость получения не оправдывает затраченных средств, а в его применении нет особой необходимости.

Назван лонсдейлит в честь кристаллографа Кетлин Лонсдейл, которая была родом из Британии.

Источник: http://sci-world.ru/raznoe/tverdost-almaz.html

Большая Энциклопедия Нефти и Газа

Cтраница 1

Высокая твердость алмаза делает его чрезвычайно цен – [ Рњ для техники.

Он применяется в буровых работах, для зки твердых каменных пород и стекла, шлифовки и мно-х других целей.

Наиболее чистые Рё красивые алмазы еле соответствующей шлифовки употребляются РІ каче-Р·Рµ украшений РїРѕРґ названием бриллиантов.  [1]

Высокая твердость алмаза делает его чрезвычайно ценным для техники.

Он применяется в буровых работах, для резки твердых каменных породи стекла, шлифовки и многих других целей.

Наиболее чистые Рё красивые алмазы после соответствующей шлифовки употребляются РІ качестве украшений РїРѕРґ названием бриллиантов.  [2]

Высокая твердость алмаза позволяет наносить сетку каналов РЅР° поверхностях любой твердости. РћРЅРё РјРѕРіСѓС‚ быть совсем РЅРµ глубокими, Р° площадь РёС… может составлять 30 – 40 % всей поверхности детали.  [4]

Обратите внимание

При сравнительно низких температурах для измерения твердости тугоплавких материалов используется алмаз.

Высокая твердость алмаза связана СЃ локализацией валентных электронов Сѓ остовов атомов СЃ образованием весьма устойчивых конфигураций, определяющих РІ СЃРІРѕСЋ очередь жесткость Рё направленность химических связей. Эти положительные свойства позволяют применять кристаллы алмаза РІ качестве материала инденторов РїСЂРё измерении твердости тугоплавких соединений Рё материалов РЅР° РёС… РѕСЃРЅРѕРІРµ РґРѕ температуры 1100 Рљ. Алмазные наконечники, характеризующиеся высокой твердостью РїСЂРё РЅРёР·РєРёС… температурах, обнаруживают быстрое притупление Рё уменьшение стойкости РІ условиях высоких температур. Установлено [112], что РїСЂРё температурах, начиная СЃ 1200 Рљ, измерение твердости вызывает быстрый РёР·РЅРѕСЃ алмазных пирамид, Р° РїСЂРё температуре 1370 – 1470 Рљ РІ результате РѕРґРЅРѕРіРѕ вдавливания наконечник выводится РёР· строя. Р’ процессе длительного пребывания РїСЂРё высоких температурах алмазный наконечник постепенно подвергается графитизации, резкой потере прочности Рё разупрочнению. РџСЂРё температурах свыше 1100 – 1150 Рљ РїСЂРѕРёСЃС…РѕРґРёС‚ превращение алмаза РІ графит.  [5]

Алмаз – минерал, состоящий РёР· углерода СЃ незначительным количеством примесей.

Высокая твердость алмаза обеспечивает ему наивысшую абразивную способность среди всех абразивных материалов.

РћРЅ способен царапать любые природные Рё синтетические – минералы Рё конструкционные материалы любой твердости.

Алмазы природные технические ( обозначение Рђ) Рё синтетические ( обозначение РђРЎ) имеют одинаковые физические свойства Рё абразивную способность, РЅРѕ отличаются прочностью.  [6]

С повышением температуры твердость алмаза понижается, однако в меньшей степени, чем у других инструментальных материалов.

Р’РІРёРґСѓ высокой твердости алмаза вероятность отрыва его частиц мала Рё адгезионный РёР·РЅРѕСЃ ничтожен РїРѕ сравнению СЃ РґСЂСѓРіРёРјРё инструментальными материалами.  [7]

Важно

Р’СЃРµ атомы РІ кристаллической решетке расположены РґСЂСѓРі РѕС‚ РґСЂСѓРіР° РЅР° одинаковом расстоянии 0 154 РЅРј Рё каждый РёР· РЅРёС… образует локализованные двухэлект-ронные СЃРІСЏР·Рё СЃ соседними атомами. Такая структура объясняет высокую твердость алмаза.  [8]

Модель углеродной сетки графита.  [9]

Энергия СЃРІСЏР·Рё между атомами углерода весьма высока, что обусловливает высокую твердость алмаза, малую его летучесть Рё большую химическую стойкость.  [10]

Во-первых, механическая обработка All с целью получения требуемого профиля затруднена из-за высокой твердости алмаза.

Во-вторых, относительно малая толщина алмазных пластин не позволяет получать традиционным способом оптические элементы с достаточной апертурой.

Читайте также:  Как выбрать опал и сколько он стоит?

Р’ качестве альтернативы было предложено [75, 76] использовать All РІ качестве подложек ДОЗ, фазовый рельеф которых формируется методом селективного лазерного травления.  [11]

Давление при выглаживании с упругим контактом обычно создается с помощью тарированной пружины.

При вращении обрабатываемой детали продольную подачу совершает резец.

Выглаживание происходит при трении скольжения, что отличает процесс выглаживания от обкатывания.

Совет

Вследствие высокой твердости алмаза выглаживание эффективно для отделочно-упрочняющей обработки деталей РёР· различных материалов Рё, РІ частности, РёР· закаленных сталей.  [12]

Структура алмаза.  [13]

Обычно говорят, что структура алмаза идентична структуре цинковой обманки, если в ней и атомы Zn и атомы S заменить на атомы углерода.

Для этого было сделано предположение, что структура составлена из двух сортов атомов углерода С4 и С4 -, радиусы которых равны 0 015 и около 0 15 нм соответственно.

Крупные анионы РЎ4 – образуют плотнейшую упаковку.

Такая структура вследствие обменного взаимодействия электронами, существующего между атомами углерода ( РІ алмазе имеет место ковалентный тип СЃРІСЏР·Рё), непрерывно осциллирует РІ том смысле, что фиксированные как положительные атомы РЎ4 РІ следующий момент становятся отрицательными атомами РЎ4 – Рё наоборот. Такая осцилляция РїСЂРёРІРѕРґРёС‚ Рє исключительной устойчивости структуры Рё высокой твердости алмаза.  [14]

Алмазные наконечники ( рис. 29, е) предназначены для выглаживания поверхности детали. Они представляют собой державку / с алмазом 2, рабочая поверхность которого имеет сферическую или цилиндрическую форму.

Наконечники закрепляются в цилиндрической оправке и совместно с ней устанавливаются в корпус, аналогичный шариковым обкаткам.

Требуемое давление алмаза на обрабатываемую поверхность создается регулируемой пружиной, помещенной внутри корпуса.

Обратите внимание

Применение алмазного инструмента для выглаживания обусловлено незначительным коэффициентом трения РїСЂРё его скольжении РїРѕ различным металлам Рё высокой твердостью алмаза.  [15]

Страницы:      1    2

Источник: https://www.ngpedia.ru/id501750p1.html

О твердости и об алмазе

С древности известно, что самое твердое вещество в природе — алмаз. Этим непобедимым материалом можно обрабатывать (резать, шлифовать) любой другой. Каждый атом в решетке алмаза связан с четырьмя соседями (рис.1). Высокая твердость алмаза — следствие наличия очень коротких сильных кова-лентных связей между атомами.

Твердость всегда была объектом пристального внимания, главным образом из-за различных технических приложений твердых материалов.Несмотря на кажущуюся очевидность понятий «твердый» и «мягкий», строгое однозначное физическое определение величины твердости отсутствует.

Твердость — это свойство материалов оказывать сопротивление проникновению в них других твердых тел. На практике часто пользуются относительной минералогической шкалой Мооса, согласно которой из двух материалов тверже тот, которым можно поцарапать другой.

Гвоздем можно поцарапать пластмассу, алмазом — стекло, следовательно, сталь тверже пластмассы, алмаз тверже стекла. Однако бывает так, что оба ма-териала царапают друг друга; такие пары образуют, например, полевой шпат и германий, рубин и карбид вольфрама.

К тому же царапающая способность зависит от условий эксперимента, например величины прикладываемой нагрузки или формы острия.В технике для измерения твердости используют методы Бринелля, Роквелла или Виккерса.

На исследуемый материал надавливают с некоторой силой либо шариком из закаленной стали (метод Бринелля и один из вариантов метода Роквелла), либо алмазным конусом (другой вариант метода Роквелла), либо алмазной пирамидкой (метод Виккерса). Остается отпечаток.

Величина твердости равна отношению нагрузки к площади отпечатка, то есть она равна давлению на материал, при котором происходит необратимая пластическая деформация – микропродавливание. В качестве непосредственно измеряемой величины в методах Бринелля и Виккерса используется диаметр, а в методе Роквелла — глубина отпечатка.

В физике твердость измеряется в одинаковых с давлением единицах, например в кгс/мм2. Величина твердости равна отношению нагрузки к 

Важно

площади отпечатка, то есть давлению на материал, при котором происходит необратимая пластическая деформация — микропродавлива-ние. Заметим, что в тех же единицах измеряется и прочность — способность материала сопротивляться деформации: она равна отношению усилия, при котором происходит разрыв или пластическое течение материала, к площади поперечного сечения образца.

В результате измерений оказалось, что для алмаза твердость по Виккер-су составляет около 10000 кгс/мм2— это в 4 раза больше твердости корунда (2500 кгс/мм2). Согласно шкале Мооса корунд имеет твердость 9, а алмаз — 10.

Это означает, что при сравнении материалов с твердостью выше 2000 кгс/мм2 шкалой Мооса пользоваться неудобно, так как все материалы будут иметь близкие значения твердости — между 9 и 10.

У материалов с высокой твердостью при любом методе измерения твердость оказалось зависящей от величины приложенной нагрузки: малым нагрузкам соответствуют более высокие значения твердости. Объяснение этому мы дадим ниже, а пока заметим, что при больших нагрузках (для алмаза выше 0,5—1 кгс) твердость почти постоянна.

В справочниках обычно приводится ее значение при нагрузке в 1 кгс. А если использовать микротвердомеры с нагрузкой на пирамидку 0,1 — 0,2 кгс, можно получить для алмазазначения в 2—3 раза больше справочных.Это обстоятельство сослужило плохую службу многим исследователям сверхтвердых материалов.

Так, сразу после синтеза в СССР искусственных алмазов было заявлено, что они тверже природных. Ученые Запада пребывали в недоумении — получаемые ими искусственные алмазы хотя и были сверхтвердыми, но уступали по большинству механических характеристик природным алмазам.

Помимо жажды сенсаций и психологически понятного стремления к рекордам в СССР был и дополнительный «политический» стимул к преувеличению полученных результатов: необходимо было доказать, что наши «социалистические» алмазы тверже и «буржуазных», и природных.

Позже выяснилось, однако, что измерения у нас проводили на стандартных твердомерах с использованием малых нагрузок -0,1—0.2 кгс, поэтому и получались значения твердости в 15000—20000 кгс/мм2.

Совет

В настоящее время в серьезных справочных изданиях содержатся данные, согласно которым по большинству механических характеристик искусственные алмазы в 1,5—2 раза уступают природным.Однако и при одинаковой нагрузке твердость разных кристаллов алмаза может оказаться разной. Она зависит от концентрации дефектов — вакансий, дислокаций, атомов примесей, микротрещин.

Твердость наиболеемягких монокристаллов алмаза составляет 6000—7000 кгс/мм2, у твердых кристаллов она вдвое выше. Часто, исследуя свойства кристалла алмаза, в том числе и твердость, можно определить, в каком месторождении он был найден. Например, якутские алмазы обычно тверже австралийских (хотя, конечно, все зависит от конкретного месторождения и даже от конкретной «трубки»). Некоторые природные поликристаллы алмаза с мелким зерном, так называемые карбонадо, имеют твердость 20000 кгс/мм2 и выше. Точность определения их твердости невелика — стандартные алмазные пирамидки, сталкиваясь в своей нелегкой жизни с таким объектом, начинают деформироваться сами.

Подытоживая, можно сделать вывод, что твердость и прочность -характеристики не столько вещества, сколько конкретного его образца с данным размером зерна, определенной концентрацией и типом дефектов и так далее.

Источник: http://www.ateismy.net/index.php/2016-02-07-17-15-41/199-2016-02-15-09-10-31/7486-2016-02-15-11-00-41

Ссылка на основную публикацию